The Amazing World of Alcohol- April 2024
Definition
The term Alcohol, refers to any of a class of organic compounds characterized by one or more hydroxyl (―OH) groups attached to a carbon atom of an alkyl group (hydrocarbon chain).
Alcohols may be considered as organic derivatives of water (H2O) in which one of the hydrogen atoms has been replaced by an alkyl group, typically represented by R in organic structures. For example, in ethanol (or ethyl alcohol) the alkyl group is the ethyl group, ―CH2CH3.
Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Perhaps the two best-known alcohols are ethanol and methanol (or methyl alcohol). Ethanol is used in toiletries, pharmaceuticals, and fuels, and it is used to sterilize hospital instruments. It is, moreover, the alcohol in alcoholic beverages. The anesthetic ether is also made from ethanol. Methanol is used as a solvent, as a raw material for the manufacture of formaldehyde and special resins, in special fuels, in antifreeze, and for cleaning metals.
Classifications
Alcohols may be classified as primary, secondary, or tertiary, according to which carbon of the alkyl group is bonded to the hydroxyl group. Most alcohols are colorless liquids or solids at room temperature. Alcohols of low molecular weight are highly soluble in water; with increasing molecular weight, they become less soluble in water, and their boiling points, vapor pressures, densities, and viscosities increase.
Another way of classifying alcohols is based on which carbon atom is bonded to the hydroxyl group. If this carbon is primary (1°, bonded to only one other carbon atom), the compound is a primary alcohol. A secondary alcohol has the hydroxyl group on a secondary (2°) carbon atom, which is bonded to two other carbon atoms. Similarly, a tertiary alcohol has the hydroxyl group on a tertiary (3°) carbon atom, which is bonded to three other carbons. Alcohols are referred to as allylic or benzylic if the hydroxyl group is bonded to an allylic carbon atom (adjacent to a C=C double bond) or a benzylic carbon atom (next to a benzene ring), respectively.
Nomenclature
As with other types of organic compounds, alcohols are named by both formal and common systems. The most generally applicable system was adopted at a meeting of the International Union of Pure and Applied Chemistry (IUPAC) in Paris in 1957. Using the IUPAC system, the name for an alcohol uses the -ol suffix with the name of the parent alkane, together with a number to give the location of the hydroxyl group. The rules are summarized in a three-step procedure:
- Name the longest carbon chain that contains the carbon atom bearing the ―OH group. Drop the final -e from the alkane name, and add the suffix -ol.
- Number the longest carbon chain starting at the end nearest the ―OH group, and use the appropriate number, if necessary, to indicate the position of the ―OH group.
- Name the substituents, and give their numbers as for an alkane or alkene.
The example on the right has a longest chain of six carbon atoms, so the root name is hexanol. The ―OH group is on the third carbon atom, which is indicated by the name 3-hexanol. There is a methyl group on carbon 3 and a chlorine atom on carbon 2. The complete IUPAC name is 2-chloro-3-methyl-3-hexanol. The prefix cyclo- is used for alcohols with cyclic alkyl groups. The hydroxyl group is assumed to be on carbon 1, and the ring is numbered in the direction to give the lowest possible numbers to the other substituents, as in, for example, 2,2-dimethylcyclopentanol.
Common Names
The common name of an alcohol combines the name of the alkyl group with the word alcohol. If the alkyl group is complex, the common name becomes awkward and the IUPAC name should be used. Common names often incorporate obsolete terms in the naming of the alkyl group; for example, amyl is frequently used instead of pentyl for a five-carbon chain.
Physical Properties
Most of the common alcohols are colorless liquids at room temperature. Methyl alcohol, ethyl alcohol, and isopropyl alcohol are free-flowing liquids with fruity aromas. The higher alcohols—those containing 4 to 10 carbon atoms—are somewhat viscous, or oily, and they have heavier fruity odors. Some of the highly branched alcohols and many alcohols containing more than 12 carbon atoms are solids at room temperature.
FEATURED ALCOHOL: BUTANOL (n-butanol/isobutanol)
Aldehyde Formed: Butyraldehyde
Carboxylic Acid Formed: Butyric Acid
Ester Formed When Reacting With Itself: Butyl Butyrate, aka Butyric Acid Butyl Ester
Butanol (also called butyl alcohol) is a four-carbon alcohol with a formula of C4H9OH, which occurs in five isomeric structures (four structural isomers), from a straight-chain primary alcohol to a branched-chain tertiary alcohol; all are a butyl or isobutyl group linked to a hydroxyl group (sometimes represented as BuOH, 1-BuOH, i-BuOH, and t-BuOH). These are 1-butanol, two stereoisomers of sec-butyl alcohol, isobutanol and tert-butyl alcohol. Butanol is primarily used as a solvent and as an intermediate in chemical synthesis, and may be used as a fuel. Biologically produced butanol is called biobutanol, which may be n-butanol or isobutanol.
The acetone-butanol fermentation was the standard for industrial production of solvents until the 1950s. Modern microbiological techniques have improved the original organism such that it produces high levels of butanol rather than mixed solvents. Butanol has many advantages as an alternative fuel source; 1) a higher energy content, 2) usable in existing pipelines, 3) easy to blend with gasoline. Butanol can be produced from sugarcane juice, molasses or sugars from bagasse hydrolysates using a strain of Clostridium beijerinckii.
Toxicity
Butanol exhibits a low order of toxicity in single dose experiments with laboratory animals and is considered safe enough for use in cosmetics. Brief, repeated overexposure with the skin can result in depression of the central nervous system, as with other short-chain alcohols. Exposure may also cause severe eye irritation and moderate skin irritation. The main dangers are from prolonged exposure to the alcohol’s vapors. In extreme cases this includes suppression of the central nervous system and even death. Under most circumstances, butanol is quickly metabolized to carbon dioxide.
Aroma
- Butyraldehyde is often described as having an “arid, pungent and/or suffocating” aroma.
- Like other volatile esters, butyl butyrate has a pleasant, fruity aroma. It is used in the flavor industry to create sweet fruity flavors that are fruity and berry-like. It occurs naturally in many kinds of fruit including apple, banana, berries, pear, plum, and strawberry.