The Rum Biography Title
The Rum Biography Introduction
Featured biography: Antonie van Leeuwenhoek
Antonie van Leeuwenhoek was born October 24, 1632 in Delft, Netherlands and died on August 26, 1723. He was the first microscopist ever to observe bacteria and protozoa. His researches on lower animals refuted the doctrine of spontaneous generation and his observations helped lay the foundations for the sciences of bacteriology and protozoology.
Early Life and Career
At a young age, Leeuwenhoek lost his biological father. His mother later married painter Jacob
become an apprentice to a linen draper. Returning to Delft when he was 20, he established himself as a draper and haberdasher. He was married in 1654 to a draper’s daughter. By the time of her death, in 1666, the couple had five children, only one of whom survived childhood. Leeuwenhoek remarried in 1671; his second wife died in 1694. In 1660 Leeuwenhoek obtained a position as chamberlain to the sheriffs of delft. His income was thus secure, and it was thereafter that he began to devote much of his time to his hobby of grinding lenses and using them to study tiny objects.
Discovery of Microscopic Life
Leeuwenhoek made microscopes consisting of a single high-quality lens of very short focal length; at the time, such simple microscopes were preferable to the compound microscope, which increased the problem of chromatic aberration. Although Leeuwenhoek’s studies lacked the organization of formal scientific research, his powers of careful observation enabled him to make discoveries of fundamental importance. In 1674 he likely observed protozoa for the first time and several years later bacteria. Those “very little animalcules” he was able to isolate from different sources, such as rainwater, pond and well water, and the human mouth and intestine. He also calculated their sizes. In 1677 he described for the first time the spermatozoa from insects, dogs, and man, though Stephen Hamm probably was a co-discoverer. Leeuwenhoek studied the structure of the optic lens, striations in muscles, the mouth parts of insects, and the fine structure of plants and discovered parthenogenesis in aphids. In 1680 he noticed that yeasts consist of minute globular particles. He extended Marcello Malpighi’s demonstration in 1660 of the blood capillaries by giving the first accurate description of red blood cells. In his observations on rotifers in 1702, Leeuwenhoek remarked that in all falling rain, carried from gutters into water-butts, animalcules are to be found; and that in all kinds of water, standing in the open air, animalcules can turn up. For these animalcules can be carried over by the wind, along with the bits of dust floating in the air.
Illustrations of Portrait of antonie van leeuwenhoek work
The Royal Society and Later Discoveries
A friend of Leeuwenhoek put him in touch with the Royal Society of England, to which he communicated most of his discoveries by means of informal letters from 1673 until 1723 and to which he was elected a fellow in 1680. His discoveries were for the most part made public in the society’s Philosophical Transactions. The first representation of bacteria is to be found in a drawing by Leeuwenhoek in that publication in 1683. His researches on the life histories of various low forms of animal life were in opposition to the doctrine that they could be produced spontaneously or bred from corruption. Thus, he showed that the weevils of granaries (in his time commonly supposed to be bred from wheat as well as in it) are really grubs hatched from eggs deposited by winged insects. His letter on the flea, in which he not only described its structure but traced out the whole history of its metamorphosis, is of great interest, not so much for the exactness of his observations as for an illustration of his opposition to the spontaneous generation of many lower organisms, such as “this minute and despised creature.” Some theorists asserted that the flea was produced from sand, others from dust or the like, but Leeuwenhoek proved that it bred in the regular way of winged insects.
Methods of Microscopy
Leeuwenhoek’s methods of microscopy, which he kept secret, remain something of a mystery. During his lifetime, he ground more than 500 lenses, most of which were very small—some no larger than a pinhead—and usually mounted them between two thin brass plates, riveted together. A large sample of those lenses, bequeathed to the royal society, were found to have magnifying powers in the range of 50 to, at the most, 300 times. In order to observe phenomena as small as bacteria, Leeuwenhoek must have employed some form of oblique illumination, or other technique, for enhancing the effectiveness of the lens, but this method he would not reveal. Leeuwenhoek continued his work almost to the end of his long life of 90 years.